## AP Calculus

## Overview

Course Description: Calculus is a college preparatory curriculum that continues covering many topics introduced in Pre-Calculus along with derivatives and integrals. This course is an Advance Placement Course. At the end of the course students should be able to take and pass the A.P. Exam.

Course Rationale: This is the final course offered in the Jonesville High School mathematics curriculum and prepares students for college-level mathematics.

Grades: 11-12
Prerequisites: Pre-Calculus
Other: 3 Trimesters

## Units of Study

## Unit Title

Review of Pre-Calc Topics
Limits and Continuity
Derivatives
Integrals
Test Preparation

## Length of Study

2 weeks
4 weeks
15 weeks
8 weeks
4 weeks

## Mathematics Core Units

Course Title: AP Calculus
Unit Title: __ Limits and Continuity $\qquad$ Length of Unit $\qquad$
Grade Level: 11-12 Unit_1_of_4

| COMMON CORE STANDARDS COVERED | UNIT BENCHMARKS <br> What do you want students to know, do, and be like? | KEY VOCABULARY | SUGGESTED ASSESSMENTS <br> How will you know if benchmarks have been achieved? | POSSIBLE RESOURCES <br> What possible instructional resources could be used? |
| :---: | :---: | :---: | :---: | :---: |
| An intuitive understanding of the limiting process <br> Calculating limits using algebra <br> Estimating limits from graphs or tables of data <br> Asymptotic and unbounded behavior <br> Understanding asymptotes in terms of graphical behavior <br> Describing asymptotic behavior in terms of limits involving infinity <br> Comparing relative magnitudes of functions and their rates of change (for example, contrasting exponential growth, polynomial growth, and logarithmic growth) <br> An intuitive understanding of continuity. (The function values can be made as close as desired by taking sufficiently close values of the domain) <br> Understanding continuity in terms of limits <br> Geometric understanding of graphs of continuous functions (Intermediate Value Theorem and Extreme Value Theorem) | Same as standards covered | Limit <br> Derivative <br> Asymptotes <br> Approaching <br> Continuity <br> Discontinuity <br> Tangent <br> Average Velocity <br> Instantaneous Velocity <br> Inflection Point <br> Concavity <br> Maximum <br> Minimum <br> Differentiable <br> Antiderivative <br> Acceleration <br> Intermediate Value <br> Theorem <br> Extreme Value <br> Theorem | 1. Homework Assignments/AP Questions <br> 2. Weekly Quizzes <br> 3. Unit Test <br> 4. Exit Tickets <br> 5. 5-3-1 Reading Summary/Concept Check <br> 6. "I Can..." Matrix <br> 7. Comparison of student work vs exemplars <br> 8. "I think I got it.." Self Assessment cards <br> 9. Research and report on a real life application of limits | TI-Nspire Calculators <br> - Geometry Pages <br> Web Resources <br> - Dynamic Exploration <br> - Geogebra.org <br> - Personal Website |

## Mathematics Core Units

## Course Title: _AP Calculus

Unit Title: Derivatives
Length of Unit $\qquad$ 75 days

Grade Level: $\qquad$
11-12
Unit $\qquad$ of 4

| COMMON CORE STANDARDS COVERED | UNIT BENCHMARKS <br> What do you want students to know, do, and be like? | KEY VOCABULARY | SUGGESTED ASSESSMENTS <br> How will you know if benchmarks have been achieved? | POSSIBLE RESOURCES <br> What possible instructional resources could be used? |
| :---: | :---: | :---: | :---: | :---: |
| Derivative presented graphically, numerically, and analytically | Same as standards covered | Derivative <br> Power Rule <br> Product Rule <br> Quotient Rule <br> Chain Rule <br> Logarithmic <br> Differentiation <br> Implicit Differentiation <br> U-Substitution <br> Linear Approximation <br> Related Rate <br> First Derivative Test <br> Second Derivative Test <br> Mean Value Theorem <br> Closed Interval <br> Method <br> Optimization <br> Absolute Max/Min | 1. Homework Assignments/AP | TI-Nspire Calculators <br> - Geometry Pages <br> Web Resources |
| Derivative interpreted as an instantaneous rate of change |  |  |  |  |
| Derivative defined as the limit of the difference quotient |  |  | 2. Weekly Quizzes |  |
|  |  |  |  |  |
| Relationship between differentiability and continuity |  |  | 4. Exit Tickets | - Dynamic Exploration |
| Slope of a curve at a point . Examples are emphasized, including points at which there are vertical tangents and points at which there |  |  |  | - Geogebra.org |
| points at which there are vertical tangents and points at which there are no tangents |  |  | 5. 5-3-1 Reading Summary/Concept Check | - Personal Website |
| Tangent line to a curve at a point and local linear approximation |  |  | 6. "I Can...." Matrix |  |
| Instantaneous rate of change as the limit of average rate of change |  |  | 7. Comparison of student work vs exemplars |  |
| Approximate rate of change from graphs and tables of values |  |  | 8. "I think I got it." Self Assessment |  |
| Corresponding characteristics of graphs of $f$ and $f^{\prime}$ |  |  | 8. cards |  |
| and the sign of $f$. |  |  | 9. Research and report on a real life |  |
| The Mean Value Theorem and its geometric interpretation |  |  | application of derivatives |  |
| Equations involving derivatives. Verbal descriptions are translated |  |  |  |  |
| into equations involving derivatives and vice versa |  |  |  |  |
| Derivative interpreted as an instantaneous rate of change |  |  |  |  |
| Corresponding characteristics of the graphs of $f, f$, and $f^{\prime \prime}$ |  |  |  |  |
| Relationship between the concavity of $f$ and the sign of $f^{\prime \prime}$ |  |  |  |  |
| Points of inflection as places where concavity changes |  |  |  |  |
| Analysis of curves, including the notions of monotonicity and concavity |  |  |  |  |
| Optimization, both absolute (global) and relative (local) extrema |  |  |  |  |

Modeling rates of change, including related rates problems

| Use of implicit differentiation to find the derivative of an inverse |
| :--- |
| function |


| Interpretation of the derivative as a rate of change in varied applied |
| :--- |
| contexts, including velocity, speed, and acceleration |
| Geometric interpretation of differential equations via slope fields and |
| the relationship between slope fields and solution curves for |
| differential equations |


| Knowledge of derivatives of basic functions, including power, |
| :--- |
| exponential, logarithmic, trigonometric, and inverse trigonometric |
| functions |

Derivative rules for sums, products, and quotients of functions
Chain rule and implicit differentiation

## Mathematics Core Units



