Geometry

Overview

Geometry introduces students to geometric concepts using inductive and deductive reasoning to prove properties of parallel lines, planes, triangles, quadrilaterals, and circles. They will also learn how to find the areas and volumes of solids and the areas of plane figures.

Course Rationale: This course serves as a prerequisite for Algebra II and Pre-Calculus. It covers material that is tested on the Michigan Merit Exam, which includes the ACT. The successful completion of Geometry is required by the State of Michigan as a graduation requirement.

Grades: 9-11 (typically taken after successful completion of Algebra I)
Prerequisites: Algebra I
Other: 2 Trimesters for complete course. Both trimesters must be completed with a 60% or higher in order to successfully complete the course.

Units of Study

Unit Title

Geometry A: Definitions/Constructions
Congruent Triangles
Similar Triangles

Geometry B: Quadrilaterals
Circles
Transformations
Modeling/Volume

Length of Study

4 weeks
4 weeks
4 weeks

3 weeks
4 weeks
2 weeks
3 weeks

Mathematics Core Units

Course Title: _Geometry A
Unit Title: _ Definitions/Constructions
Length of Unit
20 days
Grade Level: \qquad Unit \qquad of 7

COMMON CORE STANDARDS COVERED	UNIT BENCHMARKS What do you want students to know, do, and be like?	KEY VOCABULARY	SUGGESTED ASSESSMENTS How will you know if benchmarks have been achieved?	POSSIBLE RESOURCES What possible instructional resources could be used?
G.CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on undefined notion of point, line, distance along a line, and distance around a circular arc. G.CO. 9 Prove vertical angles are congruent G.CO.9 Prove points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints G.GPE. 4 Use coordinates to prove geometric theorems algebraically G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them solve geometric problems G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio G.GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles G.CO.9 Prove when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent G.C. 3 Construct the inscribed and circumscribed circles of a triangle G.CO. 12 Make formal geometric constructions with a variety of tools and methods G.CO. 13 Construct an equilateral triangle, a square, and regular hexagon inscribed in a circle	I can... ...Explain the difference between a segment, ray, and line ...Define congruent ...Define similar ...Explain the difference between congruent and similar ...Explain properties of perpendicular bisectors ...Find the slope between two points ...Explain the difference in slopes of parallel and perpendicular lines ...Identify Vertical, Straight Alternate Interior, Corresponding, and Same-Side Interior Angles ...Use Vertical, Straight, Alternate Interior, Corresponding, and Same-Side Interior Angles to find angle measures ...Use the distance formula to find lengths ...Define regular polygon ...Explain the difference between constructing a figure and drawing a figure ...Construct various geometric figures	Alternate Interior Angle Angle Bisector Congruent Corresponding Angle Distance Line Midpoint Parallel Perpendicular Point Ray Same Side Interior Angle Segment Similar Slope Transversal Vertical Angle	- Homework Assignments - Weekly Quizzes - Unit Test - Exit Tickets - 5-3-1 Reading Summary/Concept Check - "I Can..." Matrix - Comparison of student work vs exemplars - "I think I got it.." Self Assessment cards - Research and report on a real life application of basic geometric figures	TI-Nspire Calculators - Geometry Pages Geogebra.org - Dynamic Exploration Personal Website Kuta Software - Naming angles - Information in Geometric Diagrams - Angle Pair Relationships Emergent Math -Problem Based Learning - Pizza Delivery Regions - Placing a Fire Hydrant - Transversals, tape, and post-its - Classroom Coordinate Geometry

Mathematics Core Units

Course Title: _Geometry A
Unit Title: __Congruent Triangles
Length of Unit 20 days

Unit \qquad of 7
Grade Level: \qquad $9^{\text {th }}-10^{\text {th }}$

Uni

Mathematics Core Units

Course Title: _Geometry A
Unit Title: __Similar Triangles
Length of Unit 20 days

Grade Level: \qquad $9^{\text {th }}-10^{\text {th }}$

Unit \qquad 3 of 7

COMMON CORE STANDARDS COVERED	UNIT BENCHMARKS What do you want students to know, do, and be like?	KEY VOCABULARY	SUGGESTED ASSESSMENTS How will you know if benchmarks have been achieved?	POSSIBLE RESOURCES What possible instructional resources could be used?
G.SRT.2. Explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides G.SRT. 3 Use properties of similarity transformations to establish the AA criterion for two triangles to be similar G. SRT. 4 Prove a line parallel to one side of a triangle divides the other two proportionally G.SRT. 4 Prove the Pythagorean Theorem using similarity G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures G.SRT. 6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trig ratios G.SRT. 7 Explain and use relationship between sine and cosine of complementary angles G.SRT. 8 Use trig ratios and the Pythagorean Theorem to solve right triangles in applied problems	I can... ...Define similar ...Solve proportions ...Create ratios of similar figures ...Determine if two triangles are similar by AA~, SAS~, or SSS~ ...Use similar figures to find missing lengths ...Find the geometric mean of two numbers ...Use similarity in right triangles to solve for lengths of hypotenuse and altitude ...Use side-splitter theorem to find missing lengths ...Use Angle-Bisector Theorem to find missing lengths ...State the Pythagorean Theorem ...Use the Pythagorean Theorem to solve for missing lengths ...Use similarity to express the trig ratios ...Use trig ratios to find missing angles and lengths	Angle-Bisector Theorem Cosine Geometric Mean Hypotenuse Proportional Pythagorean Theorem Ratio Side-Splitter Theorem Similar Sine Tangent	- Homework Assignments Weekly Quizzes Unit Test Exit Tickets 5-3-1 Reading Summary/Concept Check "I Can..." Matrix Comparison of student work vs exemplars "I think I got it.." Self Assessment cards Research and report on a real life application of basic geometric figures	TI-Nspire Calculators - Geometry Pages Geogebra.org - Dynamic Exploration Personal Website Kuta Software - Similar Triangles - Similar Right Triangles - Proportional parts in triangles Emergent Math -Problem Based Learning - Windshield Wiper - Edgier Brownies - New York Minute

Mathematics Core Units

Course Title: _Geometry B
Unit Title: _ Quadrilaterals
\qquad $9^{\text {th }}-10^{\text {th }}$
Grade Level: \qquad Page \qquad 4 of \qquad
\qquad
\qquad
Grade Level: $\quad 9^{\text {th }}-10^{\text {th }}$

KEY VOCABULARY	SUGGESTED ASSESSMENTS How will you know if benchmarks have been achieved?	POSSIBLE RESOURCES What possible instructional resources could be used?
Isosceles Trapezoid Kite	- Homework Assignments - Weekly Quizzes	TI-Nspire Calculators - Geometry Pages
Parallelogram Polygon Angle Sum	- Unit Test	Geogebra.org - Dynamic Exploration
Theorem	- Exit Tickets	Personal Website
Rectangle Regular Polygon	- 5-3-1 Reading Summary/Concept Check	Kuta Software
Rhombus Square	- "I Can..." Matrix	- Classifying Quadrilaterals - Properties of
Trapezoid	- Comparison of student work vs exemplars	Trapezoids - Polygons and Angles

Emergent Math -Problem Based

 Learning- Complete the quadrilateral

Mathematics Core Units

Unit Title: __Circles
\qquad
$9^{\text {th }}-10^{\text {th }}$
Grade Level: \qquad
,

20 days
Page \qquad of \qquad

Mathematics Core Units

Course Title: _Geometry B
Unit Title: __Transformations Length of Unit \qquad
\qquad
Grade Level: $\quad 9^{\text {th }}-10^{\text {th }}$
Page \qquad of \qquad 7

COMMON CORE STANDARDS COVERED	UNIT BENCHMARKS What do you want students to know, do, and be like?	KEY VOCABULARY	SUGGESTED ASSESSMENTS How will you know if benchmarks have been achieved?	POSSIBLE RESOURCES What possible instructional resources could be used?
G.CO. 2 Represent transformations in the plane using a variety of methods; described transformations as functions that take points in the plane as inputs and give other points as outputs; compare transformations that preserve distance and angle to those that do not G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe rotations and reflections that carry it onto itself G.CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using a variety of methods G.SRT. 1 Verify experimentally the properties of dilations by a center and a scale factor	I can... ...Translate a pre-image by a given translation vector ...Reflect a pre-image over a give line of reflection ...Rotate a pre-image by a given angle and direction ...Dilate a pre-image by a given scale factor ...Determine what type of symmetry a figure has, if any ...Compare and contrast transformations that are isometries to those that are not	Dilation Image Isometry Orientation Pre-image Reflection Rotation Symmetry Translation Translation Vector	- Homework Assignments - Weekly Quizzes - Unit Test - Exit Tickets - 5-3-1 Reading Summary/Concept Check - "I Can..." Matrix - Comparison of student work vs exemplars - "I think I got it.." Self Assessment cards - Research and report on a real life application of basic geometric figures	TI-Nspire Calculators - Geometry Pages Geogebra.org - Dynamic Exploration Personal Website Kuta Software - Translations - Rotations - Reflections - Combined Transformation Emergent Math -Problem Based Learning

Mathematics Core Units

Course Title: _Geometry B
Unit Title: _ Modeling/Applications

Length of Unit
 15 days

Grade Level: \qquad $9^{\text {th }}-10^{\text {th }}$

Page \qquad of 7 \qquad

COMMON CORE STANDARDS COVERED	UNIT BENCHMARKS What do you want students to know, do, and be like?	KEY VOCABULARY	SUGGESTED ASSESSMENTS How will you know if benchmarks have been achieved?	POSSIBLE RESOURCES What possible instructional resources could be used?
G.GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	I can... ...Find the volume of a prism	Cavalieri Principle Cone	- Homework Assignments - Weekly Quizzes	TI-Nspire Calculators - Geometry Pages
G.GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems	...Find the volume a pyramid ...Find the volume of a cone	Cross Section Cylinder	- Unit Test	Geogebra.org
G.GMD. 4 Identify the shapes of two-dimensional cross sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two dimensional objects.	...Find the volume of a cylinder ...Find the volume of sphere	Prism Pyramid Slant height	- Exit Tickets - 5-3-1 Reading Summary/Concept Check	Personal Website - Dynamic Exploration Kuta Software
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects	...Given a three dimensional shape give the two dimensional cross section	Sphere	- "I Can...." Matrix	- Identifying Solid figures - Volume of Prisms and Cylinders
G.MG. 2 Apply concepts of density based on area and volume in modeling situations	...Explain the Cavalieri principle for three dimensional objects	Volume	- Comparison of student work vs exemplars	- Volume of Pyramids and Cones
G.MG.3 Apply geometric methods to solve design problems	...Apply geometric theorems to solve real world situations ...Apply geometric theorems to model real world situations		- "I think I got it.." Self Assessment cards - Research and report on a real life application of basic geometric figures	Emergent Math -Problem Based Learning - Pop Box Design - Dog on a leash - Edgier Brownies - Calculating Volumes of Compound Objects Hands - on Manipulatives

