Unit 1 Summary

In this unit, students will:

- Deepen addition and subtraction fact strategies.
- Use place value understanding and properties of operations to add and subtract.

Duration

4 weeks

Unit Title

Addition and Subtraction Fact Strategies

Subject Area
 MATH

Common Core State Standards

2.OA.B. Add and subtract within 20.

* 2.OA.B.2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.

Number \& Operations in Base Ten

2.NBT.A. Understand place value.

* 2.NBT.A.1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:
*2.NBT.A.2. Count within 1000; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s .
2.NBT.B. Use place value understanding and properties of operations to add and subtract.
* 2.NBT.B.9. Explain why addition and subtraction strategies work, using place value and the properties of operations. (Explanations may be supported by drawings or objects).

Operations \& Algebraic Thinking

2.OA.A. Represent and solve problems involving addition and subtraction.

- 2.OA.A.1. Use addition and subtraction within 100 [20] to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Number \& Operations in Base Ten

2.NBT.B. Use place value understanding and properties of operations to add and subtract.
2.NBT.B.5. Fluently add and subtract within 100 [20] using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.

Essential Questions/Student Targets

1. How does the use of strategies help us learn addition and subtraction problems? 2. How can knowing doubles facts help you learn other facts?
2. How does knowing addition facts help you learn subtraction facts?
3. How does reasoning help us learn addition and subtraction facts?
4. How can knowing an addition or subtraction fact help us to solve a related addition or subtraction fact?

I Can Statements

- I can create a number line with whole number intervals.
- I can represent whole numbers on a number line.
- I can skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100s
- I can compare two three-digit numbers based on meaning of the hundreds, tens, and ones digits, using <, >, = symbols to record results in comparison.
- I can represent and explain the place value of digits of a three-digit number as hundreds, tens, and ones.
- I can explain the value of zeros in a hundred, as zero tens and zero ones.
- I can identify the strategy/strategies for solving word problems.
- I can use addition (and/or subtraction) to solve 2 step word problems within 100.
- I can add (or subtract) within 100 using strategies based on place value, properties of operation, and/or the relationship between addition and subtraction.
- I can use mental strategies (e.g. count on, make ten) to add or subtract numbers within 20 with ease. - (this will be ongoing throughout the year)

Academic Vocabulary addition sum base ten comparison (greater than, less than, equal to) commutative property compose decompose equation fact family fact strategies inverse operation part-part-whole place value skip count subtraction difference	Student Vocabulary
Key Ideas/Learning Objectives Developing a deeper understanding of place value. Developing a deeper understanding of addition and subtraction strategies.	
Formative Assessment *Math Journals - recording strategies, solutions, reflections and explanations. *Slate work *Exit slips	Summative Assessment Unit 1 Assessment
Lesson Sequence EM = Everyday Mathematics 1. Introduction 2. Number Sequences (EM 1.1) 3. Number Grids (EM 1.8) 4. Relations (<, >, =) (EM 1.11) 5. Numeration \& Place Value (EM 3.1) 6. Place Value (EM 10.8 \& 10.9) 7. Addition Number Stories (EM 2.1) 8. Review "Easy" Addition Facts (EM 2.2) 9. Doubles Facts (EM 2.3) 10. Turn-Around Facts and the +9 Shortcut (EM 2.4) 11. Addition Strategies that Use Doubles Facts (EM 2.5) 12. Subtraction with Addition (EM 2.6)	Resources -Everyday Mathematics LITERATURE: Hong, Lily Toy. Two of Everything. Albert Whitman and Company. ISBN 978-0-8075-8157-5.1993. Tang, Greg. Math-terpieces the Art of ProblemSolving. Scholastic Press. ISBN 0-439-443881. 2003. Leedy, Loreen. Subtraction Action. Holiday House, Inc. ISBN 0-8234-1454-X. 2000. Tang, Greg. The Grapes of Math: Mind Stretching Math Riddles. Scholastic. ISBN 0-

13. Fact Families (EM 2.7) 14. Counting Strategies for Subtraction (EM 2.12) 15. Shortcuts for "Harder" Subtraction Facts (EM 2.13) 16. M \& M Math 17. Remediation, Enrichment, Practice	439-21033-X. 2001. Murphy, Stuart. Shark Swimathon. Harper Collins. ISBN 0-06-446735-X. 2001. Murphy, Stuart. Earth Day-Hooray! Harper Collins. ISBN 0-06-000129-1. 2004. MANIPULATIVES: Hundreds chart Number grid Base-ten blocks Number line Fact triangles

Unit 2 Summary

In this unit, students will:

- Understand place value.
- Use place value understanding and properties of operations to add and subtract.
- Represent and solve problems involving addition and subtraction.
- Tell time to the nearest 5 minutes.
- Solve money word problems.

$\|l\|$ 6 weeks	
Unit Title Place Value, Money, and Time	Subject Area MATH

Common Core State Standards

Represent and solve problems involving addition and subtraction.

- 2.OA.A.1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Understand place value.

- 2.NBT.A.1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:
- 2.NBT.A.1.a. 100 can be thought of as a bundle of ten tens - called a "hundred."
- 2.NBT.A.1.b. The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
- 2.NBT.A.2. Count within 1000; skip-count by 5 s , 10 s , and 100 s.
- 2.NBT.A.3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
- 2.NBT.A.4. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

Use place value understanding and properties of operations to add and subtract.

- 2.NBT.B.8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
- 2.NBT.B.9. Explain why addition and subtraction strategies work, using place value and the properties of operations.
Explanations may be supported by drawings or objects.

Measurement \& Data

-Work with time and money.

- 2.MD.C.7. Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
- 2.MD.C.8. Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and ϕ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?

Essential Questions/Student Targets

1. How does the value of a digit change when its position in a number changes?
2. If you had 2 quarters, 3 dimes, 2 nickels and 4 pennies, what strategies would you use to determine the value of the set of coins? Explain your strategy.
3. How do you determine whether you have enough money for what you want to buy?
4. How can you record what time it is?

I Can Statements

- I can identify the number of steps to solve a word problem.
- I can identify an unknown number in an equation using addition and subtraction up to 100 .
- I can represent and explain the place value of the digits of a three-digit number as hundreds, tens, and ones.
- I can explain the value of zeros in a hundred as zero tens and zero ones.
- I can count within 1000 .
- I can skip count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s .
- I can read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
- I can compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using <, >, and = symbols to record results comparisons.
- I can add and subtract using place value and properties of operations.
- I can mentally add and subtract 10 to a given number 100-900.
- I can explain why addition and subtraction strategies work, using place value and the properties of operation.
- I can use drawings or objects to support my explanations.
- I can tell and write time from analog and digital clocks using the following terminology: half past, quarter after/past, quarter to, minutes after/past, and minutes to.
- I can tell time to the nearest five minutes.
- I can tell the difference between a.m. and p.m.
- I can identify and give the value of dllar bills half dollars, quarters, dimes, nickels, and pennies.
- I can use \$ (dollar) and \varnothing (cents) symbols appropriately.
- I can solve a word problem with dollar bills, quarters, dimes, nickels, and pennies.

Academic Vocabulary	Student Vocabulary
analog clock	
digit	
digital clock	
dime	
half-hour	
hour	
hour hand	
minute hand	
nickel	
one-units	
quarter	
penny	
place value	
ten-units	
unit	
a.m.	
p.m.	

Key Ideas/Learning Objectives

To understand place value.
Use place value understanding and properties of operations to add and subtract.
Represent and solve problems involving addition and subtraction.
Tell time to the nearest 5 minutes.
Solve money word problems.

Formative Assessment *Math Journals - recording strategies, solutions, reflections and explanations. *Slate work *Exit slips	Summative Assessment Unit 2 Assessment
Lesson Sequence EM = Everyday Mathematics 18. Introducing the Clock (EM 3.3) 19. Exploring the Clock (EM 5.1) 20. Hours and a.m. and p.m. 21. Hours and Minutes 22. Hours and Minutes (continued) 23. Counting Routines 24. Introduction to Money 25. All About Money 26. Introduce Penny and Nickel 27. Introduce Dime 28. Introduce Quarter	Resources -Everyday Mathematics LITERATURE: Hong, Lily Toy. Two of Everything. Albert Whitman and Company. ISBN 978-0-8075-8157-5.1993. Tang, Greg. Math-terpieces the Art of ProblemSolving. Scholastic Press. ISBN 0-439-443881. 2003.

29. $\$ 1.00$ and Counting Coins
30. Money to $\$ 1.00$
31. Buying Items
32. Combination of Coins \& Fewest Coins
33. Solving Word Problems with Money
34. Solving Word Problems with Money (continued)
35. Review Money

Leedy, Loreen. Subtraction Action. Holiday House, Inc. ISBN 0-8234-1454-X. 2000.

Tang, Greg. The Grapes of Math: Mind Stretching Math Riddles. Scholastic. ISBN 0-439-21033-X. 2001.

Murphy, Stuart. Shark Swimathon. Harper Collins. ISBN 0-06-446735-X. 2001.

Murphy, Stuart. Earth Day-Hooray! Harper Collins. ISBN 0-06-000129-1. 2004.

MANIPULATIVES:
Hundreds chart
Number grid
Base-ten blocks
Number line
Fact triangles

Unit 3 Summary

In this unit, students will:

- Identify shapes and their attributes and draw shapes.
- Work with common 2-dimensional shapes and with cubes as a representative of 3-dimensional shapes.
- Begin to partition shapes. They will partition rectangles into rows and columns.
- Partition rectangles and circles into 2,3 , or 4 equal shares.
- Learn that the wholes are divided into halves, thirds and fourths.

Duration

5 weeks

Unit Title

Geometric Shapes (2-D and 3-D)

Subject Area

MATH

Common Core State Standards

Geometry

- Reason with shapes and their attributes
- 2.G.A. 1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.

Sizes are compared directly or visually, not compared by measuring.

- 2.G.A. 2 Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.
- 2.G.A. 3 Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

Essential Questions/Student
 Targets

1. What are the properties of shapes?
2. How does knowing about 2dimensional shapes help you understand 3-dimensional shapes?
3. How are 2-dimensional shapes and 3-dimensional shapes alike? How are 2dimensional shapes and 3dimensional shapes different?
4. Must equal shares of identical wholes have the same shape? Explain.

I Can Statements

- I can identify the attributes (sides, faces, angles) to describe shapes (triangles, quadrilaterals, pentagons, hexagons, and cubes).
- I can draw a shape when told its attributes.
- I can draw rows and columns of equal size in a rectangle.
- I can divide circles and rectangles into two, three, or four equal shares, describe the parts using words like halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths.
- I can explain and give examples to show that halves, thirds, and fourths of an identical whole do not need to be the same shape.

Academic Vocabulary 2-dimensional shapes 3-dimensional shapes attributes of shapes equal shares fourths halves partitioning shapes relationship between 2- and 3dimensional figures thirds whole	Student Vocabulary
Key Ideas/Learning Objectives - Identify shapes and their attri - Work with common 2-dimension representative of 3-dimensiona - Begin to partition shapes. They columns. - Partition rectangles and circles - Learn that the wholes are divid	utes and draw shapes. al shapes and with cubes as a shapes. will partition rectangles into rows and into 2, 3, or 4 equal shares. into halves, thirds and fourths.
Formative Assessment *Math Journals - recording strategies, solutions, reflections and explanations. *Slate work *Exit slips	Summative Assessment Unit 3 Assessment
Lesson Sequence EM = Everyday Mathematics 36. Introduction to 2-D Shapes 37. 2-Dimensional Shapes 38. 2-Dimensional Shapes 39. 2-Dimensional Shapes	Resources -Everyday Mathematics -Teachers Pay Teachers

40.	2-Dimensional Shapes	
41.	3-Dimensional Shapes	LITERATURE:
42.	3-Dimensional Shapes	
43.	3-Dimensional Shapes	The Greedy Triangle by Marilyn
44.	3-Dimensional Shapes	Burns
45.	3-Dimensional Shapes	
46.	3-Dimensional Shapes	
47.	3-Dimensional Shapes	
48.	2-D and 3-D	MANIPULATIVES:
49.	2-D and 3-D	Marshmallows
50.	Assessment for 2-D and	Toothpicks
51.	Sharing Equally	Pattern block templat
52.	Pizza Fractions (2 days)	Pattern blocks
53.	Grandmas' Quilts tioning rectangles)	
54.	Chocolate Bar Math	
55.	Rectangle Riddles	
56.	Making a Cake	
57.	My Country's Flag	
58.	Fraction Review	
59.	Fractions Assessment	

Unit 4 Summary

In this unit students add and subtract within 100, applying an understanding of place value, the properties of operations, and the inverse relationship between addition and subtraction.

Duration
7 weeks

Unit Title Addition and Subtraction Strategies and Algorithms	Subject Area MATH

Common Core State Standards

Operations \& Algebraic Thinking

- Represent and solve problems involving addition and subtraction.
- 2.OA.1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
- Add and subtract within 20.
- 2.OA.2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. See standard 1.OA. 6 for a list of mental strategies.

-Work with equal groups of objects to gain foundations for multiplication.

- 2.OA.3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by $2 s$; write an equation to express an even number as a sum of two equal addends.
- 2.OA.4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

Number \& Operations in Base Ten

-Understand place value.

- 2.NBT.1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:
- 2.NBT.1.a. 100 can be thought of as a bundle of ten tens - called a "hundred."
- 2.NBT.2. Count within 1000; skip-count by $5 \mathrm{~s}, 10$ s, and 100 s.

-Use place value understanding and properties of operations to add and

 subtract.- 2.NBT.5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
- 2.NBT.6. Add up to four two-digit numbers using strategies based on place value and properties of operations.
- 2.NBT.9. Explain why addition and subtraction strategies work, using place value and the properties of operations.
Explanations may be supported by drawings or objects.

Essential Questions/Student

Targets

1. How can you use what you know about addition to help you subtract?
2. How can you decide if an answer makes sense?
3. Why is it important to "invent" your own strategies for solving word problems?
4. Why is it important to explain your thinking?
5. How can you use an addition or subtraction problem you already know to solve a related problem?

I Can Statements

- I can identify the number of steps to solve a word problem.
- I can identify an unknown number in an equation using addition and subtraction up to 100.
- I can identify the strategy/strategies used for solving word problems.
- I can use addition and/or subtraction to solve 2 step word problems within 100.
- I can use mental strategies (e.g. count on, make a ten) to add or subtract numbers within 20 with ease.
- I can recall from memory all sums of two one-digit (0-9) numbers.
- I can identify a group of objects as being even or odd using different strategies.
- I can write an equation to show an even sum has the same addends (e.g. $5+5=10,6+6=12$).
- I can use addition to find the total number of objects in an array.
- I can write an addition equation (e.g. $3+3+3=9$) to express the total as a sum of equal addends.
- I can represent the total number of objects arranged in a rectangular array as an expression with the repeated addition of number of objects.
- I can represent and explain the place value of the digits of a three-digit number as hundreds, tens, and ones.
- I can explain the value of zeros in a hundred as zero tens and zero ones.
- I can count within 1000.
- I can skip-county by 5 s, 10 s, and 100s.

	- I can add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. - I can add up to four two-digit numbers using strategies like rearranging or making tens depending on the numbers being added. - I can explain why addition and subtraction strategies work, using place value and the properties of operations. - I can use drawings or objects to support my explanations.

Academic Vocabulary

addend
associative
commutative
compose/decompose
difference
digit
equation
inverse relationship
solution strategy
sum
unknown

Student Vocabulary

Key Ideas/Learning Objectives

-Represent and solve problems involving addition and subtraction.

- Add and subtract within 20.
-Work with equal groups of objects to gain foundations for multiplication.
-Understand place value.
-Use place value understanding and properties of operations to add and subtract.

Formative Assessment *Math Journals - recording strategies, solutions, reflections and explanations. *Slate work *Exit slips	Summative Assessment Unit 4 Assessment
Lesson Sequence EM = Everyday Mathematics 1. Addition Number Stories (EM 2.1) 2. Review "Easy" Addition Facts (EM 2.2) 3. Doubles Facts (EM 2.3) 4. Turn-Around Facts and the +9 Shortcut (EM 2.4) 5. Addition Strategies that Use Doubles Facts (EM 2.5) 6. Subtraction from Addition (EM 2.6) 7. Fact Families (EM 2.7) 8. Counting Strategies for Subtraction (EM 2.12) 9. Shortcuts for "Harder" Subtraction Facts (EM 2.13) 10. Numeration \& Place Value (EM 3.1) 11. Change-to-More Number Stories (EM 4.1) 12. Parts-and-Total Number Stories (EM 4.2) 13. Temperature Change (EM 4.4) 14. Paper-and-Pencil Addition Strategies (EM 4.8) 15. The Partial-Sums Algorithm (EM 4.9) 16. Comparison Number Stories (EM 6.2) 17. Mixed Addition and Subtraction Stories (EM 6.4) 18. Subtraction Strategies (EM 6.5) 19. Multiples of Equal Groups (EM 6.7) 20. Array Number Stories (EM 6.8) 21. Multiplication with Arrays (REPEATED ADDITION) (EM 6.9) 22. Extending Complements of 10 (EM 7.2) 23. Mental Arithmetic (EM 7.3) 24. Place Value (EM 10.8)	Resources -Everyday Mathematics -Teachers Pay Teachers LITERATURE: Chalmers, Mary. (1986). Six Dogs, 23 Cats, 45 Mice, and 116 Spiders. Harpercollins Childrens Books Cristaldi, Kathryn. (1996). Even Steven and Odd Todd. Cartwheel Publishers Giganti, Paul (1999). Each Orange Had 8 Slices. Greenwillow Books, Publishers Hong, Lily Toy. (1993). Two of Everything. Albert Whitman and Company, Publishers Murphy, Stuart J. (2006) Mall Mania. HarperCollins Publisher Ringgold, Faith. (1991). Tar Beach. Crown Books for Young Readers, Publishers MANIPULATIVES: - Base-ten blocks - Hundred chart - Number lines

25. Place Value Tools (EM 10.9)
26. The Trade-First Subtraction Algorithm (EM 11.3)
27. U.S. Traditional Addition (EM Project 1 -pg. A1)
28. U.S. Traditional Subtraction (EM Project 2-pg. A6)
29. Extra
30. Extra
31. Extra
32. Extra
33. Extra
34. Review
35. Assessment

Unit 5 Summary

In this unit, students will:

- be introduced to standard linear measurement, inches and feet, centimeters and meters. They build an understanding of the relationship between two units of measure by first estimating, then measuring, the length of the same object with different length units (e.g., inches and centimeters) and explaining how the measurements relate to the units used to measure the object.
- use standard units to express the difference between the lengths of two objects. Students solve word problem involving linear measurement that includes adding and subtracting within 100 , modeling problems on a number line and representing problems with both drawings and equations. They display linear measurement data on line plots, picture graphs and bar graphs and use that data to solve problems.
- Organize and represent data

Duration
6 weeks

Unit Title	Subject Area
Measurement and Data	MATH

Common Core State Standards

Measurement \& Data

Measure and estimate lengths in standard units.

- 2.MD.1. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
- 2.MD.2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
- 2.MD.3. Estimate lengths using units of inches, feet, centimeters, and meters.
- 2.MD.4. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.

Relate addition and subtraction to length.

- 2.MD.5. Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
- 2.MD.6. Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent wholenumber sums and differences within 100 on a number line diagram.

Represent and interpret data.

- 2.MD.9. Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.
- 2.MD.10. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems1 using information presented in a bar graph.

Essential Questions/Student Targets

1. How is the space between the lines on a ruler the measure of length?
2. How does the size of the unit affect the length measure of an object?
3. How are units of measurement related?
4. How is estimation helpful in measurement?
5. How can students use a variety of tools (e.9., number lines and

I Can Statements

- I can select and use appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes to measure the length of an object.
- I can measure the length of an object twice, using length units for the two different measurements.
- I can describe how the two measurements relate to the size of the unit chosen.
graphs) to represent linear measurement data and solve given problems?

6. Where do questions for collecting data come from?
7. How can I collect the information I need to answer the questions?
8. How do graphs and charts help us answer questions?
9. How can I organize data I collect?
10. How can I display data I get from a data collection?
11. What questions can I ask and answer about the data displayed in my chart or graph?

- I can estimate lengths using units of inches, feet, centimeters, and meters.
- I can measure to determine how much longer one object is than the other.
- I can express the length difference in terms of a standard length unit.
- I can add and subtract lengths of the same unit within 100.
- I can solve word problems involving lengths that are given in the same units.
- I can use drawings and equations with a symbol for the unknown number to represent the problem.
- I can create a number line with whole number intervals.
- I can represent whole numbers on a number line.
- I can find sums and differences within 100 using a number line.
- I can measure and record the lengths of several objects to the nearest whole number.
- I can create a line plot with a horizontal scale marked off in whole number units.
- I can record length measurements on a line plot.
- I can solve problems with data in graphs by using addition and subtraction.
- I can make comparisons between categories in the graph using more than, less than, etc. with up to four sets of data.
- I can draw a picture or bar graph to represent a given set of data with up to four categories.

Academic Vocabulary	Student Vocabulary
bar graph	
compare	
equations representing data	
estimate	
interpreting data	
line plot	
measure	
number line diagram	
picture graph	
representing data	
standard linear measures	
question	
investigate	
data	
collect	
organize	
sort	
classify	
category	
represent	
interpret	
less than	
more than	
most	
least	
different	
same	
column	
survey	
combine	
compare	
draw conclusions	
range	
precise	
Key Ideas/Learning Objectives	

Academic Vocabulary

Student Vocabulary

compare
equations representing data
interpreting data
line plot
measure
number line diagram
picture graph
representing data
standard linear measures
question
investigate
data
collect
organize
sort
classify
egory
represent
interpret
less than
more than
most
leas \dagger
different
column
survey
combine
compare
draw conclusions
range
Key Ideas/Learning Objectives

- Measure and estimate lengths in standard units.
- Relate addition and subtraction to length.
- Represent and interpret data.

Formative Assessment	Summative Assessment
*Math Journals - recording	
strategies, solutions, reflections and	
explanations.	Unit 5 Assessment
*Slate work	
*Exit slips	
Lesson Sequence	
1. Introduction	Resources
2. Measuring Attributes	-Teachers Pay Teachers
3. Exploring Length	
4. Non-Standard Units	
Scavenger Hunt	LITERATURE:
5. Moving from Non-Standard to	Jim and the Beanstalk by Raymond
Standard Part 1	Briggs
6. Moving from Non-Standard to	Standard Part 2
7. Moving from Non-Standard to	Measuring Penny by Loreen Leedy
Standard Part 3	
8. US Standard Units (Inches,	Inch by Inch by Leo Lionni
Feet, Yards)	
9. Measuring Paths	How Big is a Foot? By Rolf Myller
10. Metric System - Centimeters	MaNIPULATIVES:
and Meters	Rulers
11. Measuring Objects with Two	Yardsticks
Units	Metersticks
12. Length Differences in Objects	
13. Choosing Tools and Units of	
Measurement	
14. Solving Measurement Word	
Problems	
15. Line Plots - Day 1	
16. Line Plots - Day 2	
17. Picture Graphs	
18. Bar Graphs	
19. Gathering Graph Information	
20.Picture Graphs	
21. Bar Graphs	

22. Making Your Own Graph
23.Review Data
24.Basketball Graphing
25.Basketball Graphing
23. Review
27.Assessment
